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N M 

The motion of a fluid, having a free surface, has been the subject of 

much interest  to men of inquiring minds throughout history. Problems such 

as the wave motion over sloping beaches, flood waves in the r ivers ,  and the 

motion of ships in the sea preoccupied scientists in earlier days. Lagrange 

investigated surface wave problems and was a forerunner in this field to such 

noted scientists as Cauchy, Poisson, Airy, Stokes, Kelvin, Rayleigh, Lamb, 

and Stoker. These men made a great  number and variety of studies of the 

physical problems involving surface waves and were outstanding in their 

contributions to this field. 

Research in the field of surface wave problems, in the last two 

decades, has  produced more  information than all preceding s h d i e s .  One 

reason for  the rapid pace of surface wave research in this period can be 

attributed to the advent of high speed computers which permitted the use of 

methods of analysis that were not practical earlier. A second reason is that 

the aerospace industry needed vast  amounts of surface wave information to 

design large jet a i rcraf t  and space vehicles. 



This investigation is concerned with the type of surface wave problems 

known a s  standing gravity waves of finite-amplitude. W. 6 .  Penny and A .  I. 

Price [ 11 analyzed such waves in a rectangular tank of infinite depth and 

published the first study of finite-amplitude standing waves in 1952. Since 

then, a number of publications have appeared generalizing and extending their 

work. 

Tadjbakhsh and Keller [ 21 analyzed finite-amplitude standing waves 

in a rectangular tank, a s  did Penny and Price;  however, their analysis was 

for a finite depth tank. They found that finite standing gravity waves in a 

rectangular container will have a lower frequency than infinitesimal standing 

waves at large depths, but they have higher frequency below a certain depth. 

Fultz [ 31, disturbed by the frequency effect reversal  found by 

Tadjbakhsh and Keller, undertook an experimental study of finite -amplitude 

standing gravity waves in rectangular tanks. He found experimentally, a s  did 

Tadjbakhsh and Keller theoretically, that there is a frequency effect reversal 

of a fluid in a rectangular tank. 

Mack [ 41 analyzed standing gravity waves of finite-amplitude in a 

circular cylinder and obtained results for the first axisymmetric standing 

wave. DiMaggio and Rehm [ 51 then studied the same circular cylinder to 

obtain the first nonaxisymmetric standing wave. 
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Baird [ 61 investigated the f i r s t  nonaxisymmetric standing wave in 

a cylindrical sector container. 

Moiseyev [ 71 published a general theory for free and forced oscilla- 

tions of a fluid in a rigid container. To the author's knowledge, this method 

has not been used to obtain finite-amplitude gravity waves because of the 

inherent difficulty of solving the integrai equations upon which the theory is 

based e 

The problem set forth here is to obtain the first nonaxisymrnetric 

finite-amplitude gravity wave in an axisymmetric rigid container. It is 

assumed that the fluid is perfect and surface tension effects are negligible. 

The formulation of the problem resul ts  in a nonlinear boundary value 

problem. The nonlinearity is in the boundary condition a t  the free surface 

of the fluid. Not only is the boundary condition at the free surface nonlinear, 

but also it must be satisfied on a moving surface of unknown shape. The 

method of solution is to expand the nonlinear boundary in a Taylor's series 

about the undisturbed free surface, and then satisfy it asymptotically by the 

method of Krylov and Bogoliubov [ 81 . 

The solution to this problem is of dual interest. Not only is it a 

fundamental study in the field of surface waves, but a lso it provides a means 

to obtain a thorough understanding of surface waves in space vehicle propel- 

lant tanks. In no other application to axisymmetric containers is the motion 

of the fluid more important than in the field of space research since the 
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propellant in a space vehicle contributes over 90 percent of the total weight. 

Thus, this study contributes much information about the overall dynamic 

characterist ics of a space vehicle e 
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The volume of fluid, V ,  in the axisymmetric container is bounded 

by the free surface, S and the surface in contact with the container, F . 

The free surface existing when the fluid is at rest is known as the undisturbed 

free surface,  So. 

In this analysis the fluid is assumed to be incompressible and inviscid 

with its motion irrotational. The effects of surface tension are neglected. 

The only body force considered to be acting on the fluid is that due to gravity, 

and it acts along the negative z-axis as shown in Figure I. These assump- 

tions are justifiable [ 91 in the study of many fluid oscillation problems, such 

as the sloshing of the propellant in the tanks of a space vehicle during boost 

flight. 

The above assumptions ensure the existence of a velocity potential 

$(r, 8, z; t) for the fluid [ I O ] .  Thus, the velocity field can be expressed as 

and the continuity equation, in te rms  of the velocity potential, becomes 
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Figure I. Coordinate System 
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Laplace's equation 

Thus, the equation of motion of the fluid is Laplace's equation, a linear 

differential equation about which a great deal is known, 

The boundary conditions that the solutions of ( 2 . 2 )  must satisfy a r e  

based on the assumptions that any particle on the boundary of the fluid remains 

on the boundary and that the pressure on the free surface is known. To 

determine mathematical t3xpressions for  the boundary conditions, let the 

entire surface of the fluid, both fixed and free,  be expressed as 

6 ( r , e , z ; t )  = 0 

Taking the material derivative of ( 2 . 3 )  yields 

Noting that V 6  0 V$b is the velocity normal to the surface S ,  

equation (2.4)  becomes 

a?j,/an + at = o on S . (2 .5)  

Since 6 = 0 on the fluid surface in contact with the container, the t 

boundary condition on F becomes 

a$/an = o on F 



Letting ? ( r y e ;  t) be the wave height of the free surface, 6 

may be expressed as 

( 2 . 7 )  6 = z - q  on S . 

Then substituting ( 2 . 7 )  in ( 2 . 5 )  , the boundary condition on the free 

surface becomes 

on s * 

It is necessary to obtain another boundary condition for the free 

surface since the unknown wave height 

problem. The additional boundary condition comes from the previously 

mentioned assumption that the pressure on the free surface is known. A 

mathematical expression for this boundary comes from Bernouilli's law 

has been introduced into the 

where Po is the pressure at the free surface. On the free surface S , 

equation ( 2 . 9 )  becomes 

$t + ( V $  V $ ) / 2  + rlg = 0 on S (2 .10)  

The differential equation and appropriate boundary conditions that 

govern the motion of a fluid undergoing free oscillations in a rigid, partially 

filled container have been developed. These governing equations are 

summarized as follows: 
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in V 

on F 

(2 .  i ia)  

(2.  i lb)  

( 2 .  i ic)  

+t + (vq * v w 2  + qg = 0 on S . (2 .  l i d )  

Equations (2.11) represent a boundary value problem in which the 

differential equation is linear, and the boundary conditions consist of one 

linear boundary condition and two nonlinear boundary conditions. Not only 

are equations (2 .  i ic)  and (2 .  l i d )  nonlinear, but they must be satisfied on a 

moving surface. Because of the difficulty of solving such a boundary value 

problem, very little progress has been made without making simplifying 

assumptions of one so r t  or another. 

The assumption is made in this analysis that the wave height l) and 

the velocity potential 

small  positive parameter E ,  which is proportional to the wave height of 

l inear solution and becomes evident later in the analysis. 

can be expanded in a power series with respect to a 

2) = E# + €2$2 + €3?43 + . . . (2.12) 

(2.13) I 2 2  3 3  l) = El) + E l )  + E l )  + . . . . .  

Equations ( 2. 1la) and ( 2 .  l ib)  , through the use of (2.12) , become 

v 2 p  = 0 in V (2.14) 

on F (2.15) ( i) / a n  = 0 
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Since boundary conditions ( 2 .  l i e )  and ( 2. l i d )  require evaluating the 

velocity potential and its derivatives on the free surface ( z  = q) , it is 

assurned that these functions can be expanded in a Taylor's series about the 

undisturbed free surface (that is, z = 0 ) .  Thus 

( 2 . 1 6 )  

Substituting equations (2.12) and (2 .13)  in (2.16),  yields 

Since the derivatives of + have similar expansions, equation ( 2 .  l l c )  

becomes 

(2.18) 
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and equation ( 2. l i d )  becomes 

n Equating the coefficients of E equal to 

solved for  the first-order become 

For the second-order, the equations become 

gr13 + +;+; + r rz T i  

+z+zzrl ) 
1 1  I 

on So (2.19) 

zero, the equations to be 

in V (2.20a) 

on F (2.20b) 

on So (2.20c) 

on So ( 2.20d) 

in V 

on F 

on So 

(2 .2 ia )  

(2.2ib) 

(2.21c) 

on So . (2.2161) 



And, for the third-order, the equations become 

in V V2$3 = 0 

aq3/an = o on F 

(2.22a) 

(2.22b) 

on So (2.22c) 

on So . (2.22d) 

Equations (2.20) through (2.22) , in principle, furnish a means of 

calculating successively the coefficients of the series (2.12) and (2.13) . 

Equations (2.20) lead to solutions for +I and 7‘ . Once and 77’ are 

determined, they can be inserted in equations (2.21) to permit solutions for 

q2 and q2 . Thus, this procedure can be applied until as many t e rms  in the 

series for  + and q as desired have been calculated. 

Even though the procedure described above will yield a solution, there 

remain two boundary conditions on the free surface and two unknowns in the 

problem to  determine. Therefore, it is a computational advantage to combine 

the two free surface boundary conditions s o  that 17 is eliminated, leaving a 

boundary value problem with one unknown to determine. This is simple to do 

once equations (2.20d) ,  (2 .2 id ) ,  and (2.22d) have been differentiated with 
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respect to time. It must be remembered that .combining the two f r ee  surface 

boundary equations in this manner eliminates any constant term which may 

exist in qi , q 2 ,  and q3 . These constant terms will be dealt with later. 

The boundary value problem to be solved, after the algebriac manipulations 

have been performed, is for the first-order, 

v"i= 0 

a+I/an = o 

For the second-order, the problem is 

v2+2 = 0 

a+2/an = o 

in V 

on F 

on So 

( 2.23a) 

(2.23b) 

( 2 . 2 3 ~ )  

on So . (2.23d) 

in V 

on F 

(2.24a) 

(2.24b) 

on So ( 2 . 2 4 ~ )  

and 

on So . (2.24d) 

And, for the third-order, the problem is 

v2+3 = 0 in V (2.25a) 
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a+3/an = o on F (2.25b) 

The constant terms that were removed from qi , q 2 ,  and q2 in the 

process of combining the free surface boundary equations may be lumped 

together in one constant, qo . The wave height equation then becomes 
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7) = 7)o + €7) I + €27)2 + €37)3 + . . . on So . (2 .26)  

The constant qo is evaluated from the condition that the volume of 

fluid remains constant and can be expressed mathematically as 

JqdSO = 0 . 
SO 

(2 .27)  

The equations governing the nonlinear oscillations of a fluid in a 

partially filled container have been developed. 
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It is com.mon in many fluid oscillation problems to retain only the 

first-order terms in the governing equations. The problem is then known as 

a linear fluid oscillation problem. This linearization is accomplished by 

truncating the series expansions of ?+h and q after the first te rm;  therefore, 

the governing equations are the first-order equations expressed by ( 2 . 2 3 )  . 
These equations are restated as 

in V ( 3 .  l a )  

on F (3. lb) 

on So (3. I C )  

and 

q1 = - ?+h;/g on So ( 3 .  Id) 

Sjnce this analysis is concerned only with fluid motion that is 

harmonic with time, the time dependence can be removed from the equations 

by the transformation 

( 3 . 2 )  
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where o is the frequency of oscillation. Then equations (3. I) become 

024 = 0 

a # / a n  = o 

in V (3.3a) 

on F (3.3b) 

on So . (3.3c) (bz = w2(b/g 

The boundary value problem (3.3) can also be expressed as an 

extremum problem. According to Hamilton's principle 

6 I = O  , 

where 61 is an isochronous variation of 

I = J(KE - PE)d t  . 
t 

The kinetic and potential energy are expressed as 

+ 
KE = (p/2) JT v dV 

V 

(3.4) 

(3.5) 

where p is the fluid density. 

If the kinetic and potential energy are written in terms of the velocity 

potential, equation (3.5)  becomes 



By integrating over t from 0 to 2n/w and omitting a nonessential 

factor, I can be expressed as 

Lawrence, Wang, and Reddy [ 111 have shown that the solutions of 

equations ( 3 . 3 )  are also the solutions of the extremum problem for the 

integral I as expressed by equation ( 3 . 9 )  . 

The approach taken in this analysis is to determine an approximate 

solution to the extremum problem rather  than to solve the boundary value 

equations. Trefftz's method [ 121 will be used to construct this approximate 

solution. This method begins by choosing a complete sequence of linearly 

independent functions, u (r, 0 , z) , each of which satisfies the differential 

equation. The approximate solution is expressed as a series of the 

coordinate functions u 

ik 

ik 

where the coefficients a are determined from the condition ik 

A I( @ - @ )  = minimum 

A set of necessary conditions are 

( 3 . 1 0 )  

( 3 . 1 1 )  

18 
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Through the use of equations (3.9) and (3.  IO), equation (3.12) 

becomes 

The volume integral in (3.13) can be changed to  a surface integral 

using Green's Theorem. Applying this theorem to the volume integral and 

noting that u and u satisfy Laplace's equation and that the dot product 
ik j l  

obeys the commutative law, the volume integral becomes 

1 

2 F  
s (vu j l  0 VU. ) dV = - s ( u  auik/8n + u 8 u  /8n)dF 
V 

j l  ik j l  ik 

I 
2 j l  ik j l  + - l ( u  8uik/8n + u 8 u  /8n)dSo . 

SO 
(3.14) 

Equation (3.13) can now be written as 

E E ( s(uj18uik/8n + u ik 8u j l  /an) d F  
j 1  F 

+ ( U  8uik/8n + u 8 u  /an) dSo 
j l  ik j l  

SO 

(3.15) 

Since this analysis is concerned with axisymmetric containers, it is 

advantageous to consider the surface F to be generated by rotating a curve 

y about the axis of symmetry. 
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Let y be expressed in parametric form 

r = r ( a )  

z = z ( a )  

where 

ai 5 a 5 a2 

and 

r(ai) = 0 z ( Q ~ )  = - H 

r ( a 2 )  = R z(a2)  = 0 

where R is the radius of the container at the f ree  surface, and H is the 

height of the container a t  the axis of symmetry. 

The derivatives normal to F and differential element of area on F 

then become 

dF = rJ(r')2 + ( z ' ) ~  deda 

where 

r' = d r ( a ) / d a  Z' = d z ( a ) / d a  

( 3 . 1 6 )  

( 3 . 1 7 )  

Using equations ( 3 .16)  and ( 3 .17)  and realizing that the surface So 

is a circle,  we can express equation ( 3 . 1 5 )  as 
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+ uik(zlau.  / a r  - r ' au  /az)] rdade 
31 j l  

2n R 

0 0  
+ s s [u. 8uik/az + uik a u  /az ] rdrde 

31 j l  

2n R 
(3.18) 

The chief difficulty encountered in solving equations (3.18) is 

selecting the coordinate functions since there are no general recommendations 

available. It is known from the general theory that if the system of coordinate 

functions is complete and it satisfies the differential equation, the minimizing 

sequence constructed by Trefftz's method will converge to the exact solution 

[ 121 It is therefore advisable to select u as eigenfunctions of some volume 

that contains the given volume but has  a sirnpler shape. Therefore, in this 

analysis, the coordinate functions that will be used are the eigenfunctions of 

ik 

the fluid in a cylindrical container whose c ross  section equals the largest 

c ross  section of the given conkainer. Thus 

u = J ( p  r) cosh[pki(z + H ) ]  cos(kO)/cosh(pkiHc) (3.19) ik k ki C 

where p are the roots of d J  ( p  r ) / d r  I = 0 ; R is the maximum radius 
C r = R  ki  k 

C 

of the axisymmetric container; and H 

axisymmetric container. 

is the depth of the fluid in the 
C 
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Equation ( 3.19) can be rewritten as 

A u = u cos(k0) ik ik 

where 

(3.20) 

Inserting the coordinate functions ,expressed by ( 3.20) into ( 3.18) 

and integrating with respect to 8 , yields 

A A  
R 

- ( 2w2/g) 1 ( ujkuik) r d r  
0 

(3.21) 

where a nonessential factor has been dropped and the orthogonal 'properties 

of the cosine functions have been used. 

Equation (3.21) represents  an eigenvalue problem for each k . 
Since equation (3.21) is symmetric with respect to i and j , the eigen- 

values, 2w2/g are real. Solving equation (3 .21)  by one of several 

standard means for  each value of k , the eigenvalues and vectors  are 
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2\1/g - eigenvalue 

- jth element of the eigenvector 
jkl a 

Thus the solutions of ( 3 . 3 )  are 

and the frequency of oscillation is 

) /cos*, . 6 kj Hc) 

( 3 . 2 2 )  

( 3 . 2 3 )  

Equations ( 3 .22)  and ( 3 . 2 3 )  a r e  the eigenfunctions and the frequency 

of oscillation of a fluid in an axisymmetric container. 

The eigenfunctions have the following important orthogonality 

relationship which will be needed later: 

( 3 . 2 4 )  

This relationship is easily obtained by using the orthogonal 

properties of the cosine functions and the eigenvectors. 

A means has been presented by which the linear fluid oscillation 

problem can be solved for the case of a fluid contained in an axisymmetric 

vessel  of general shape. 
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The equations governing the nonlinear fluid oscillation problem 

were developed previously. The velocity potential and wave height were I 

assumed to be expandable in a power ser ies  of a small positive parameter,  

and the governing equations were developed for the te rms  in the expansion 

for the velocity potential through the third-order te rm.  The method by which 

the nonlinear equations will be solved is that of Krylov and Bogoliubov [ 81 . 

This method assumes that velocity potential can be expressed as 

It is obvious that the assumed form of satisfies the differential 

equation and the boundary condition on F , since + ara solutions of the 

linear problem. Thus, the problem at hand is to evaluate A ( i )  so  that the 

free surface boundary condition is satisfied. Since we are seeking periodic 

solutions, A ( i )  is periodic with time; therefore, it is advantageous to effect 

a change of variable so  that A (i)  is periodic with a period of 27r e Thus let 

Pm 

Pm 

Pm 

Pm 
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(4.2) 
t 

0 
T = s ( w  + EBi + c2B2 + . . . ) d t  , 

where w is the linear frequency. 

Therefore, the instantaneous frequency 7 is obtained by differentiating 

equation (4.2) 

i = w + cBi + c2B2 + . . . (4.3) 

In general, the t e rms  B(i) are functions of the wave amplitude. 

Thus, for the sake of completeness, let equation (4.3) be written as 

i = w + EBi(K) + c2B2(K) + . . . ( 4.4) 

where K is an amplitude parameter,  and its rate of change is a function of 

the amplitude. Thus K can be defined by 

K = cDi(K) + c2D2(K) + . . . 

Equation (4. i) can now be written as 

where the parameters T and K are defined by 

i = w + E B ~ ( K )  + E ~ B ~ ( K )  + . . . 

K = EDI(K) + ~ D ~ ( K )  + . :. 

(4.5)  
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To uniquely define the coefficients in equations (4.7)  and (4 .8)  it is 

necessary to  impose additional restrictions on them. Mathematically, these 

conditions can be expressed as 

(4 .9)  

(4.10) 

From a physical point of view, the imposition of these conditions is equivalent 

to selecting K as the full  amplitude of the first harmonic of the oscillation. 

Noting that 21, = 21,[ r, 8,  z, T (  t) K( t) 3 , the time derivatives of the 

velocity potential become 

Substituting the expansions for i , K , and 21, in equations (4.11) 

and (4.12) yields 

21,t = ~ ( ~ 2 1 , ' )  + ~ ~ ( ~ 2 1 , ~  + BIGi + D'21,;) 
7 7 7 

+ ~ ' ( ~ 2 1 , :  +- B'21,; + B2$: -t- D'21,: + D221,i) + O ( 8 )  

(4.13) 
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and 

Substituting the expansions for $ and 2) in equations (4.13) and t tt 
n (4.14) and equating coefficients of E , yields 

$; = W 2 q T  (4.18) 

$tt = GTT + ~ U B ' $ ; ~  + 2wDi$& (4 .19 )  

Through the use of equations (4.15)  through ( 4.20) ,  the boundary 

condition equations (2 .23c) ,  ( 2 . 2 4 c ) ,  and ( 2 . 2 5 ~ )  become, for  the first-order 
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2 1  w $7-T + g$' = 0 
Z 

Y 

and, for  the second-order 
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+ 2w 2 1 1  $ $ /g  + 2w 2 1 1  $T+z$Tzz /g  I 
T zz T Z  

4 1 1  - w  II, $ $ I  /g2 - w2q1 /g 
T T Z  T T Z  T Z  T zz 

(4.23) 

A s  expressed by (4 .6 ) ,  $J( i, satisfies the differential equation and 

( i) the boundary condition a t  the container wall F . Thus, if the te rms  A 

a r e  chosen s o  that the boundary condition on the free s'urface equations (4.21) ,  

(4.22) , and (4.23) a r e  satisfied, then the nonlinear fluid oscillation problem 

has been solved through the third-order terms.  

Pm 

Since this analysis is to determine a solution near the first non- 

axisymmetric mode of oscillation, w is  taken to be defined by 

w = wii  (4.24) 

It is clear  from the linear solution shown previously that equation 

is satisfied by choosing 
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= K COS (7) $11 (4.25) 

The wave height 7’ can be obtained from equation (2.23d) after equations 

(4.15) and (4.25) have been used. 

To determine an expression for A so that the second-order free 
Pm 

surface boundary condition is satisfied, equations (4.6) and (4.24) are 

substituted in equation (4.22) to  yield 

5 2 A  = sin( 27) {w K2 [ ($11) r1 2/2 + w K2( $11) 2/( 2r2) + o K (@it) 2g2) 1 
I A  + COS (0)[2B1wK$ll C O S ( T )  

-t- cos( 20) s in(  27) {w K2 [( 

+ 2wD KGl1 sin(7) J 

]‘/2 + w2K( $11) ’/( 2r2) 

+ $11) /( 2g2) 1 9 (4.26) 

where the identities 

cos2(pe) = [I + cos(2pe)]/z 

sin2(po) = [i - c o s ( ~ p 0 ) ] / 2  

s in(  27) = 2 sin(7) COS(T) 

(4.27) 

(4.28) 

(4.29) 
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and the expressions 

(4.30) 

(4.31) 

have been used. 

The two summations in equation (4.26) can be removed by using the 

orthogonality relationship (3.24) after the equation has  been multiplied by 

and integrated over the surface So . The result is 
@qn t 

where 

(4.33) 

(4.34) 

(4.35) 
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Substituting the Fourier expansion of A 
qn 

Q Q 
7 

[aqn cos ( I T )  + b s in(Q7) ] 
I A 2  = - a o  + 

qn qn Q = i ,  qn 
(4.36) 

in equation (4 .32) ,  it becomes 

03 
Q 

w 2  a '  /2 + [ ( w 2  -Q2ww")a CSS(QT) + ( w 2  -Q2w2)bQ s i n ( Q ~ ) ]  
qn cln qn qn Q =i qn cm 

= 6 6 2u[KBi COS(T)  + D ' s i n ( ~ ) ]  + nwK26  ( I i  + I2  
q i  n l  qo qn qn 

(6/2)n.wK26 (Ii - I 2  + w413 /g2)sin(27) (4.37) 
q2 qn qn qn 

The Fourier coefficients of the expansion for A 2  can be determined 
qn 

from equation (4.37) by equating the coefficients of cos@ T )  and sin(Q T )  

after the conditions expressed by equations (4.9)  and (4.10) have been 

imposed and the assumption made that w 

examined later. Thus, ~ 

f Q2w2 . This assumption wi l l  be 
qn 

i B = O  

Di = 0 

b 2  On = .rwK'(I& + I 2  On + w4~;n/g2)/(w& - 4w2) 

(4.38) 

(4.39) 

( 4.40) 
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I 
cln 

a = o  ( 4.42) 

bQ = 0 I # 2  
cln 

(4.43) 

b 2  = 0 q # O  or  q + 2  ( 4.44) 
cln 

When equations (4.38) through (4.44) are used, the second-order te rm 

in the expansion of the velocity potential becomes 

co 
(4.45) 

The wave height T~ can be evaluated from equation (2.24d) after equations 

(4.15),  (4 .16) ,  (4 .25) ,  and (4.45) have been used. 

The third-order solution is developed in  a manner similar to that 

used for the second-order solution. Equations ( 4 . 6 ) ,  (4 .25) ,  and (4.45) 

are substituted in the third-order free surface boundary condition (4.23) to 

yield 
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+ ( i / 2 )  aK$ll(  b 
j = i  
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I 00 

(4.46) 

The two summations in equation (4.46) can be removed by using the 

orthogonality relationship (3.24) af ter  the equation has  been multiplied by 

and integrated over the surface So e The resul t  is 
%n 
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w 2 ( A 3 )  + o 2  A 3  
qn T T  qn qn 

=, c o s ( ~ ) { 2 w K B ~ 6 ~ ~ 6 ~ ~  + 6 . r r [ -wK14 - ( i / 2 ) w K 1 5  - wK16 
qi  cln cln qn 

+ ( 1/2) 0 3 K I  /g2 + w3KIia/g2 
qn 

- ( 1 / 2 ) @ ~ 1 9  /g2 - ( 1 / 4 ) ~ ~ 1 i : / g ~  
qn 

- (9/i6)K31ii  + (3/16)K3w8II3/g4 cm qn 

- (3/8)K3w41i5/g2 + (3/16)K3Il2 
4Ln cln 

+ (3/16) K31 I4 - (3/8)K 3 Iqn 16 

- I1/8) K 3 w 4 Iqn/g2 17 1 

cln 

' + 6 Ti- ( I / ~ ) ~ K I ~  + U K I ~  + ( 1 / 2 ) ~ ~ ~ 1 ?  /g2 
q3  qln cm cm 

- (1/4)wKIi0/g2 - (3/16)K3Iii 
qn cln 

+ ( 1/16)K3w8113/g4 - (1/8)K 3 w 4 Iqn/g2 15 

- (3/i6)K31i2 - (3/i6)K31i4 + (3/8)K31i6 cm cln qn 

qn 

+ ( 1/8)K 3 w 4 Iqn/g2 I? 1 
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+ ( i / 16 )K3I i4  - (1/8)K31i: - ( 3 / 8 ) K w  3 4 1 7  Iqn/g 2 ] 
cln 

+ 6  n [ - ( 3 / 2 ) w K 1 5  + 3wK16  - (5/2)w3K17 /g2 
93 cln 9n qn 

+ ( i / 4 ) o K I i o / g 2  - ( l / i 6 ) K 3 1 i i  
cln 9n 

- (5/16) K3w81 I3/g4 - (3/8) w 4 K 3 Iqn/g2 15 

- ( 1 / i 6 ) K 3 I i 2  - ( i / i 6 ) K 3 I i 4  + (1/8)K31i6 
qn cln cln 

qn 

+ (3/8) K3w41 I7/g2 ] } 
qn 

+ s i n ( ~ )  2wD2Gqi6ni ( 4 . 4 7 )  9 

where 

00 

I 6  = J$ RA bzj $,, r-ldr 
qn 0 qn j=i  

00 

j = i  

( 4 . 4 8 )  

( 4 . 4 9 )  

( 4 . 5 0 )  

( 4 . 5 1 )  

( 4 . 5 2 )  
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( 4 . 5 3 )  

( 4 . 5 4 )  

( 4 . 5 5 )  

( 4 . 5 6 )  

( 4 . 5 7 )  

( 4 . 5 8 )  

( 4 . 5 9 )  

( 4 . 6 0 )  

( 4 . 6 1 )  
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Substituting the Fourier expansion of A 
qn 

00 

A 3  = (1 /2 )co  + [c' c o s ( 8 ~ )  + dQ s i n ( Q ~ ) ]  , (4.62) 
qn qn Q=i cln qn 

in equation (4.47) , the following expression is obtained: 

- Q2w2)dQ s i n ( Q ~ ) ]  
+ (wqn qn 

= + 6 T[ - w K 1 4  - (1/2)wK15 - w K 1 6  
cy1 qn qn w 

+ ( I / ~ ) ~ ~ K I ~  /g2 + w 3 ~ ~ 8  lg2 

- ( I / ~ ) ~ K I ~  /g2 - ( I / ~ ) ~ K I ~ O / ~ ~  

cm qn 

cln qn 

- (9/16) K31i1 + (3/16) K 3 d I  I3/g4 
qn qn 

- (3/8)K3w41i5/g2 + (3/16)K 3 I 12 
qn qn 

+ (3/16)K31i4 - (3/8)K 3 Iqn 16 

- ( 1/8) K 3 w 4 1 ~ ~ / g 2  J 

qn 

+ 6 n [  - ( I /2)wKIin  + wK16 + (i/2)w3K17 /g2 
cy3 cm cm 

- (1 /4)uKIl0 /g2  - (3/16)K31ii 
qn qn 

+ ( 1/16)K3~8113/g4 - (1/8)K 3 o 4 Iqn/g2 15 
qn 
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- (3/16)K3112 - (3/16)K3II4 + (3/8)K3116 
qn qn qn 

+ (1/8)K 3 w 4 Iqn/g21) 17 

+ cOS(3T){ 6 T[ -3UK14 - (3/2)wKIin - 3wK16 
qi  qn qn 

- (5/2) w3KI 'I /g2 - 5w3KI8 /g2 cm cln 

+ ( I / ~ ) ~ K I ~  /g2 + ( I / ~ ) U K I & / ~ ~  
qn 

- (3/16)K3Iii - (15/I6)K3w8Ii3/g4 
qn qn 

- (9/8)K3u4Ii5/g2 + (1/16)K 3 Iqn 12 
cm 

+ ( i / i6)K3II4 - (1/8)K Iqn I6 - (3/8)K 3 w 4 Iqn/g2] 17 

qn 

+ sin( T )  2w D2 GqiSnl (4.63) 

The Fourier coefficients of the expansion for A 

from equation ( 4.63) by equating the coefficients of cos(B T) 

after the conditions expressed by equations (4.9) and (4.10) have been 

imposed and the assumption made that w 

examined later. Thus, 

can be determined 

and sin(] T) 

cm 

f k2w2 . This assumption will be 
cln 
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C 1  in = T [ - w K I t n  - (1 /2 )wKIfn  - w K I &  + ( l /2)w3KIln/g2 

+ w3KIiSn/g2 - ( 1/2) w KI:n/g2 - ( i/4) w KIi:/g2 

- ( 9/16) K31ik + (3/16) K 3 1 g  + (3 / i6)  K30aI:i/g4 

+ (3/16)K31:i - (3/8)K 3 0 4 Iin/g2 15 - (3/8)K 3 Iin 16 

- (1/8)K 3 w 4 I l n / g 2 1 / ( w ~ n  17 - w 2 )  

n f l  (4.64) 

C '  = T [  - ( I / 2 ) w K I i n  + wK16 + (I/2)w3KI,&/g2 
3n 3n 

- (1/4) wKI;L/g2 - (3 / i6 )  K 3 IQn 11 - (3/16) K 3 IQn 12 

+ ( 1 / i 6 ) K 3 w 8 1 ~ ~ / g 4  - (3/16)K 3 IQn 14 - ( i / 8 ) K  3 w 4 IQdg2 15 

c 3  in = T [  - 3 ~ K 1 ; ~  - ( 3 / 2 ) ~ K 1 : ~  - 3 ~ K 1 : ~  - ( 5 / 2 ) ~ ~ K I : ~ / g ~  

- 5w3KI /g2 + ( i /2)  w KIin/g2 + ( i/4) w KI:; i n  

- (3/ i6)K31ik + ( i / i 6 ) K 3 1 g  - ( 15 /16)K3w81~~/g4  

+ (l/i6)K31;: - (9/8)K 3 CL) 4 Iin/g2 15 - (1/8)K 3 Iln 16 

(4.66) - (3/8)K 3 4 IIn/g2]/(w& 17 - 9w2) 
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c 3  = T [  - ( 3 / 2 ) ~ K 1 ; ~  + 3wKI& - (5/2)w3KI&/g2 
3n 

+ (1/4)wKI$;/g2 - (1/16)K 3 IQn I1 - ( l / i 6 ) K  3 IQn 12 

- ( 5/16) K3w8Ii;/g4 - ( 1/16) K 3 IQn 14 - (3/8) w 4 K 3 13n/g2 15 

+ (1/8)K 3 IQn 16 + (3/8)K 3 w 4 13n/g21/(w3n 17 2 - 9w2) 

(4.67) 

Q 
cln 

All values of c equal zero except the ones given by equations (4.64) 

through ( 4.6'7) . 

dp = 0 (4.68) 
qn 

4 5 6 B~ = T [w K I ~ ~  + ( 1/2) K I ~ ~  + w K I ~ ~  - ( 1/2) ~ K I A / ~ ~  
- w3KI:l/g2 + ( 1/2) w KI:i/g2 + ( 1/4) w KIil 10 /g 2 

+ ( 9 / 1 6 ) K 3 1 ~ ~  - (3/i6)K3I: - (3/16)K 3 8 1 3  w Ili/g 4 

- (3/16)K 3 Ili 14 + (3/8)K3w4I;./g2 + (3/8)K 3 111 16 

+ ( 1/8) K3w41::/g2] / (  2w K) (4.69) 

D2 = 0 (4.70) 

The third-order term in the expansion of the velocity potential can 

now be expressed as 

(4.71) 
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The wave height q3 can be evaluated from equation (2 .25d)  once equations 

( 4 . 1 5 )  ( 4 . 1 6 )  ( 4 . 1 7 )  , ( 4 . 2 5 ) ,  ( 4 . 4 5 )  , and (4 .71) '  have been used. 

A nonlinear salution has been developed through the third-order term,  

but two unknown quantities, K and E ,  still exist. To evaluate K and obtain a 

meaningful physical significance for  E , consider the first approximation to 

the wave height q . 

on So 7 = = E K W  sin(-r) @ii/g 

Since K is arbi t rary,  let it be evaluated so that 

71 = 1 at T =  n / 2 ,  8 = 0 ,  and r = R  Y 

therefore K becomes 

K = g / b  @ii(R, 0,O)l 

( 4 . 7 2 )  

( 4 . 7 3 )  

( 4 . 7 4 )  

and 

7 = E  at . ~ = n / 2 ,  6 = 0 ,  and r = R  ( 4 . 7 5 )  

Thus the wave height of the linear theory evaluated at T = n / 2  , e = 0 , and 

r = R is equal to E . This is the same physical significance found by Mack 

[ 41 , DiMaggio and Rehm [ 51 , and Baird [ 61.  

It is useful to manipulate the nonlinear frequency i so that a 

frequency correction factor can be extracted from it. This is accomplished 

by squaring i and rearranging the t e rms  
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( i )2  = u2 [ I  + ( 2 B 2 / u ) c 2  + . . . ] (4.76) 

Thus, for a solution through third-order te rms ,  the nonlinear frequency 

parameter ( i )  

of 2B2/u , which is called the frequency correction factor G . It is also 

convenient to  let 

is different from the l inear frequency parameter by a factor 

C 

( i p  = A* 

and 

u2 = h 

Then equation (4 .76) ,  for  a third-order solution, becomes 

A" = h ( I  + G c2) 
C S 

(4.77) 

(4.78) 

(4.79) 

where 

G = 2B2/u (4.80) 
C 

The solution of the nonlinear fluid oscillation problem in an axisym- 

metr ic  container has  been formulated, but some things of interest  should be 

noted. In the expansion of K , all the t e rms  were zero. One would expect 

this since K is an amplitude parameter and should remain constant for a con- 

servative system such as this one. In the expansion of i, it was found that 

B1 was zero.  Thus, the second-order equations do not affect the frequency 

of oscillation. 
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Numerical resul ts  were obtained for finite-amplitude standing waves 

near  the first antisymmetric linear mode in three axisymmetric containers. 

Since cylindrical tanks with bulkheads of various shapes are in general use, 

it was considered appropriate to apply the theory developed in this work to 

obtain numerical resul ts  for  them. The containers for which resul ts  were 

obtained were a cylindrical tank with an ellipsoidal bulkhead, a cylindrical 

tank with a conical bulkhead, and a cylindrical tank with a truncated conical 

bulkhead 

In the case of the cylindrical tank with an ellipsoidal bulkhead, the 

eccentricity of the bulkhead was considered a parameter and varied accord- 

ingly. The eccentricity, e ~ is taken to mean the ratio of the depth to the 

radius of the bulkhead, and numerical resul ts  were obtained for  values of 

e = 0 . 5 ,  e = I . O  and e = 2 . 0 .  

The parameter that was varied in the study of the cylindrical tank with 

a conical bulkhead was the angle between a horizontal line and the generator 

of the cone. This angle p took on values of 30 deg, 45 deg, and 60 deg. 
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The third tank geometry studied is similar to the conical bulkhead 

tank except that the bulkhead is truncated at  one-half the depth of the cone. 

Thus the cylindrical tank, with a truncated conical bulkhead, has a radius at 

the bottom equal to  one-half the radius of the cylindrical portion of the tank. 

Again, the angle p was parameterized for values of 30 deg, 45 deg, and 60 

deg. 

It is convenient to  nondimensionalize the numerical resul ts  in such a 

way that one is able to  compare the effect of the various tank geometries on 

the resul ts .  The two dim nsional quantities in this analysis are length and 

time. Thus, the radius of the cylindrical portion of the tanks, Rt , and the 

local gravitational acceleration, g , will be used for  this purpose. The 

nondimensional variables of interest  are 

- 
H = H/Rt , - 

e = e ,  = hRt/g , 

To obtain the nonlinear solution it is necessary to solve the linear 

problem first. Thus, the accuracy of the method by which the linear resul ts  

were achieved must be considered. 

It was explained previously that the &symmetric container being 

analyzed was generated by rotating a curve y about the axis of symmetry, 

and this curve was expressed in parametric form. It was assumed that in 
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writing a computer program for this problem, the curve y was made up of 

several  sections, and each of the individual curves was of the form 

r = a. cos(b .a  + c.) + d .a2  + e.a + f .  (5.  la) 
1 1 1 1 1 1 

z = g. s in(h ia  + p.) + q.a2 + s.a + t 
1 1 1 1 i (5.  1b) 

where a is the parameter.  

Thus, by using several sets of equations and selecting the proper 

coefficients in equation (5.  I) , an  axisymmetric container of quite a general 

shape can be obtained. 

The linear solution is obtained by solving the eigenvalue problem, 

which is represented by equation (3.21) and from which a great deal can be 

learned about the convergence of the solution. Symbolically, equation (3.21) 

can be written as 

The assumption was made previously that the velocity potential of an 

a rb i t ra ry  axisymmetric container could be approximated by a series of 

velocity potentials from a cylinder of radius R and height H where 

R equals the maximum radius of the a rb i t ra ry  container, and H equals 

its height. Thus for  the containers under study, R is the radius at the 

f ree  surface. Bearing this in mind, matr ices  [ B] and [ C] are diagonal. 

Matrix [A] is obtained by integrating a function of the assumed velocity 

C C Y  

C C 

C 
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potentials, which is zero at R over the container walls. Therefore, if 

the container being studied was a cylinder, this function would be zero at the 

container walls, and [A] would become zero. Thus matrix [A] can be 

called a deviation matr ix  since it is a measure of the degree to  which the 

container deviates f rom a cylinder. A careful study of the function that is 

integrated to obtain [A] can explain something about the convergence of the 

problem. The function is zero at R and becomes larger  as r is decreased; 

also, the function decreases  with fluid depth. Thus one would expect excellent 

convergence for a container whose radius deviated only slightly from R near  

the free surface, even if it was greatly different at larger depths. 

c )  

C 

C 

A study was made varying the number of te rms ,  NT , in the approxi- 

mating series as a check of the convergence. The containers used in this 

study were a cylindrical tank with an ellipsoidal, a conical, and a truncated 

conical bulkhead. Each was filled to a depth of H = I. 0 . Tables I, 11, and 

I11 show the resulting eigenvalues to  six decimal places. A s  expected, the 

best  convergence was observed in the cylindrical tank with the truncated 

C 

conical bulkhead since it was filled above the conical section, and the devia- 

tion matr ix  should have been small. The worst convergence was observed 

for the conical bulkhead tank since the fluid was in the conical section. 

Figure 2 shows a comparison of the first three nonaxisymmetric 

frequencies of a fluid in a cylindrical tank with a spherical bulkhead with 

computed and test results obtained by Budiansky [ 131. The comparison is 

excellent, indicating that the method by which the  linear solution was obtained 

is valid. 
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0.0 0.2 0.4 0. 1.4 1. 2. 

Figure 2.  Comparison of Linear Frequencies in a Cylindrical Tank 
with a Spherical Bulkhead as a Function of Fluid Depth 
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Figure 3 shows the l inear frequency of a fluid in a cylindrical tank 

with an ellipsoidal bulkhead as a function of depth. Curves are presented for 

e = 0 . 5 ,  e ' = l . O ,  and g = 2 . 0 .  
- 

Figure 4 shows the linear frequency of a fluid in a cylindrical tank 

with a conical bulkhead as a function of depth. Curves are presented for 

p = 30 deg p = 45 deg ~ and K = 60 deg . A s  can be observed, the 

frequency decreases  with depth until the fluid level reaches the conical 

section, and then it starts to increase. 

Figure 5 shows the l inear frequency of a fluid in a cylindrical tank 

with a truncated conical bulkhead as a function of depth. Curves are 

presented for p = 30 deg , p = 45 deg , and p = 60 deg . In comparison 

with Figure 4, one notes that they a r e  s imilar  until shallow depths are 

reached. This difference, of course,  is because the flat bottom of the 

container becomes effective. 

It should be noted that as the fluid depth increases, the tank bottom 

becomes less effective. Thus, as the depth increases,  the frequency of the 

fluid in all three tanks approaches the frequency obtained for a fluid in a 

cylindrical tank of infinite depth. 

The assumption, u?. *fzuz, was made previously. A t  certain 
13 

critical depths this assumption is violated, and the solution becomes invalid. 
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Figure 3. Linear Frequency of a Fluid in a Cylindrical Tank 
with an Ellipsoidal Bulkhead as Function of Depth 
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Figure 4. Linear Frequency of a Fluid in a Cylindrical Tank 
with a Conical Bulkhead as a Function of Depth 

56 



2.50 

2.25 

2,OO 

1.7 5 

% w 
9 1,25 
0 
w 
lY 
Lb 
tx 11.00 

3 
4w 
Z 

0.7 5 

0.50 

0.25 

0.00 
0.0 0.9 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 9.0 

D 

, 

Figure 5. Linear Frequency of a Fluid in a Cylindrical Tank 
with a Truncated Conical Bulkhead as a Function of Depth 
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Mack [ 41 has pointed out the reason for the solution becoming invalid at the 

critical depths. It has been assumed that there is a first mode of order E 

oscillating at a frequency w and that all other modes and harmonics are of 

order  2 or higher. However, at the critical depths this assumption is 

invalid. In general, critical depths do not cause any problem since the 

solution is known to be invalid and is disregarded. However, at  shallow 

depths it is impossible to do this. Thus, for all cases  studied, the 

solutions were found to be invalid a t  shallow depths. Therefore, an 

experimental study should be performed to determine the range for 

which the solution is valid. 

In an attempt to verify this analysis, the frequency correction factor 

E was computed for a cylindrical tank as a function of depth and compared 

with the solution obtained by DiMaggio and Rehm 51 as shown in Figure 6. 

A s  can be observed, the comparison is excellent. 

C 

Figure 7 shows a comparison of the nonlinear and linear frequency 

of a fluid in a cylindrical tank with a spherical bulkhead as a function of 

depth. It can be observed that the nonlinear frequency is lower than the 

linear frequency above a depth of H = 0 . 3 5  and higher below this depth. 

The linear and nonlinear wave profile was computed for = 0.2 and 

presented in Figure 8. The curve is shown in a configuration of maximum 

potential energy, which occurs at T = [ (1/2) + n]n and which is, of course, 
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Figure 6 .  Comparison of Frequency Correction Factor 
for a Cylindrical Tank as a Function of Depth 

L 

59 



2.0 

1.9 

1. 

1.7 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

1 .o 
0.0 0.2 0.4 0.6 0.8 1.0 !,? 1.4 1.6 1.8 2.0 

Figure -7. Comparison of Nonlinear and Linear Frequency 
of a Fluid in a Cylindrical Tank with a 

Spherical Bulkhead as a Function of Depth 

60 



0.20 

5 

0.10 

0 

c 0.05 

$2 
x 
ud 

w > 
4 
B 

= 0.00 

-0.05 

-0.10 

-0.15 

-0.20 
1.0 0.8 0.6 0.4 0 2  0.0 0.2 0.4 0. 0.8 "so 

Figure 8. Comparison of Linear and Nonlinear Wave Heights 
in a Cylindrical Tank with a Spherical 

Bulkhead as a Function of Radius 

61 



when the velocity is zero. The nonlinear wave profile is different from the 

l inear wave in that a nodal line does not exist and the surface is never flat. 

Figure 9 shows the frequency correction factor for a fluid in a 

cylindrical tank with an ellipsoidal bulkhead as  a function of depth. It is 

interesting to note that for e' = 0 . 5  and e' = f . 0 the curve for E is s imilar  

in shape to the one for a cylinder, but for  = 2 .0  it is quite different. 

Observing Figure 3, one notes that for e' = 2.0 the linear frequency is 

increasing with a decrease in depth until the fluid level becomes small .  It 

appears that an increase in linear frequency with a decrease in depth tends to  

make 5 decrease.  

C 

C 

Figure f O  shows the frequency correction factor for a fluid in a 

cylindrical tank with a conical bulkhead as a function of depth. For all three 

values of p 

surface is in the conical bulkhead, at which time it starts to decrease.  This 

can be explained as before by the fact that the linear frequency is increasing 

(F ig .  4) as the depth is decreasing. 

- 
G tends to  increase with a decrease in depth until the fluid 

C 

Figure f f  shows the frequency correction factor for a fluid in a 

cylindrical tank with a truncated conical bulkhead as a function of depth. 

For  p = 30 deg G behaves very much like it does for  a cylindrical tank, 

which is expected since the solution becomes invalid before it becomes small  

enough for the fluid to be in the bulkhead section of the tank. It is seen that 

G for p = 45 deg and p = 60 deg tend to increase with a decrease in 

- 
C 

- 
C 
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Figure 9. Frequency Correction Factor for a Fluid in a 
Cylindrical Tank with an Ellipsoidal Bulkhead as a Function of Depth 
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Figure 10. Frequency Correction Factor for a Fluid in a 
Cylindrical Tank with a Conical Bulkhead as a Function of Depth 
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depth until the fluid surface reaches the bulkhead, and then start to decrease 

until the tank bottom becomes effective. 

0.0 0.2 0.4 0.6 0.8 3.0 1.2 1.4 1. 2.0 

Figure i 1. Frequency Correction Factor for  a Fluid in a 
Cylindrical Tank with a Truncated Conical Bulkhead as a Function of Depth 
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CONCLUSIONS 

A solution for finite-amplitude free oscillations of a fluid in a partially 

filled axisymmetric container has  been presented. The formulation of the 

problem resulted in a nonlinear boundary value problem where the nonlinearity 

occurred in the boundary condition at the f ree  surface of the fluid. The 

boundary condition at the container wall and the differential equation were 

linear. 

The solution was obtained by first linearizing the free surface boundary 

condition and solving the resulting linear boundary value problem. Then the 

linear solutions , which satisfy the differential equation and the boundary 

condition at the container wall, are used to construct a solution that satisfies 

the nonlinear boundary condition at the free surface asymptotically. A solu- 

tion through the third-crder t e rm was developed. 

Numerical resul ts  were obtained for finite-amplitude standing waves 

near the f i r s t  antisymmetric linear mode in three axisymmetric vessels.  

Results were found for a cylindrical tank with an ellipsoidal bulkhead, a 

cylindrical tank with a conical bulkhead, and a cylindrical tank with a 

truncated conical bulkhead. 

66 



The method of solving the linear problem was verified by comparing 

the computed linear frequency with published test  results for the case of a 

cylindrical tank with a hemispherical bulkhead. The nonlinear solution was 

checked by comparing the results for a cylindrical tank with published 

theoretical results. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama 35812, August 29, 1969 
981-10-10-0000 
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